La moda statistica è una misura di tendenza centrale utilizzata nell’analisi dei dati. Rappresenta il valore o il risultato più frequente all’interno di un insieme di dati. In altre parole, la moda è il valore che si ripete più spesso all’interno di un dato campione. Per capire meglio proviamo a fare un esempio molto elementare in tal senso, e individueremo subito quale sia la “moda” di un insieme di dati.
Esempio facile di moda
Immagina di avere un gruppo di amici e stai contando quanti dolcetti preferiti ognuno di loro ha. Ecco i loro dolcetti preferiti:
Amico 1: Gelato
Amico 2: Cioccolata
Amico 3: Gelato
Amico 4: Gomme da masticare
Amico 5: Gelato
Amico 6: Caramelle
Amico 7: Gelato
Ora, per trovare la moda, dovresti vedere quale dolcetto è il più popolare, ovvero il dolcetto che compare più spesso. In questo caso, il “Gelato” è il più popolare perché appare 4 volte, mentre gli altri dolcetti appaiono solo 1 o 2 volte. Quindi il gelato è la moda dei loro dolcetti preferiti perché è la scelta più comune in tutto il gruppo.
In modo più formale, la moda statistica è una misura di tendenza centrale definita come il valore o la categoria che compare più frequentemente all’interno di un insieme di dati. Per un insieme di dati numerici o categorici, la moda è il punto di massima frequenza nella distribuzione.
Se consideriamo un insieme di dati numerici, la moda viene denotata come “Mo” e può essere calcolata come segue:
Dato un insieme di dati numerici: {x1, x2, x3, …, xn}
- Calcola la frequenza di ogni valore nel dataset.
- Identifica il valore con la frequenza massima, ovvero il valore che si ripete più spesso.
- Se più valori hanno la stessa frequenza massima, l’insieme di dati è multimodale, cioè ha più di una moda.
Se consideriamo un insieme di dati categorici, la moda può essere calcolata in modo simile, ma anziché valori numerici, avremo categorie o etichette.
Esempi
Nel caso dei dati numerici, la moda è il valore che si verifica più frequentemente: per esempio, se si ha un insieme di dati come 2, 4, 3, 4, 6, 7, 4, la moda è 4 poiché è il valore più frequente. Nel caso dei dati assimilabili a etichette (A, B, C, …), la moda è semplicemente l’elemento con la frequenza più alta, cioè quello che compare più volte. Per cui se si ha un insieme di voti espressi come:
A, B, C, B, A, B
Multimodale
La moda è una misura utile per identificare il valore più comune in un insieme di dati e può essere particolarmente rilevante per determinare preferenze, frequenze o comportamenti prevalenti in un dato contesto.
In un caso ideale la moda è un valore unico ma posso avere anche più valori come più frequenti (distribuzione multimodale), se ad esempio consideriamo 1 e 2 rispetto alla distribuzione di dati:
{1, 2, 1, 3, 1, 2, 4, 5, 2}
Come si calcola la moda
Per calcolare la moda, è necessario identificare il valore che ha la maggiore frequenza nella distribuzione dei dati. Questo può essere fatto per dati categorici (nominali o ordinali) o per dati numerici (discreti o continui).
Se ci sono più valori con la stessa massima frequenza, l’insieme di dati è detto “multimodale”, poiché ha più di una moda.
Esercizio svolto sulla moda
Consideriamo un insieme di dati che rappresenta i voti degli studenti di una scuola superiore in un esame di matematica:
{75, 80, 90, 85, 75, 95, 80, 75, 85, 90}
Per calcolare la moda, dobbiamo identificare il voto che appare più frequentemente nell’insieme di dati. Vediamo quanti voti ci sono e quante volte si ripetono:
75 appare 3 volte
80 appare 2 volte
90 appare 2 volte
85 appare 2 volte
95 appare 1 volta
Ora, possiamo notare che il voto “75” è il più frequente con tre ripetizioni, quindi la moda della distribuzione dei voti è 75.
Quindi, possiamo dire che il voto “75” è il più comune tra gli studenti di questa scuola superiore in questo esame di matematica.
Conclusioni
La moda è uno dei tre principali parametri di tendenza centrale utilizzati in statistica, insieme alla media e alla mediana. La scelta di quale misura di tendenza centrale utilizzare dipenderà dal tipo di dati e dall’obiettivo dell’analisi statistica. È importante notare che non tutti gli insiemi di dati hanno una moda. Ad esempio, se tutti i valori nel dataset sono distinti e non vi è un valore dominante, l’insieme di dati non avrà una moda. Inoltre, alcune distribuzioni di dati potrebbero avere più di una moda o essere prive di una moda, a seconda della struttura dei dati.
È importante notare che una distribuzione può avere più di una moda (modalità multiple) o non avere una moda se tutti i valori sono distribuiti uniformemente. La moda, insieme alla media e alla mediana, è uno dei principali indicatori di tendenza centrale utilizzati in statistica per riassumere i dati e capire la loro struttura.
👇 Da non perdere 👇
- Cellulari 📱
- Domini Internet 🌍
- Gratis 🎉
- intelligenza artificiale 👁
- Internet 💻
- Spiegoni artificiali 🎓
- 💬 Il nostro canale Telegram: iscriviti
- 🔴 Udemy: cos’è e come funziona
- 🟢 Come mettere una chiamata in attesa – usare *43#
- 🟠 Hosting, 7 errori da non commettere quando ne compriamo uno